你想相识什么是数学建模么?看这篇文章就够了
作者:华体会 发布时间:2022-04-04 10:01
本文摘要:1.「数学建模」的历程主要有哪些?数学建模的界说这里引用下我老师写的新书中对数学模型和数学建模的界说,我以为算是一个比力不错的版本,这里分享给大家:数学模型是使用系统化的符号和数学表达式对间题的一种抽象形貌。数学建模可看作是把问题界说转换为数学模型的历程。 和问题界说相对应,数学模型包罗几个主要组成部门:决议变量、情况变量、目的函数和约束条件。决议变量表现决议者可以控制的因素,即可控输入,是需要通过模型求解来确定的模型中的未知变量。

华体会官网

1.「数学建模」的历程主要有哪些?数学建模的界说这里引用下我老师写的新书中对数学模型和数学建模的界说,我以为算是一个比力不错的版本,这里分享给大家:数学模型是使用系统化的符号和数学表达式对间题的一种抽象形貌。数学建模可看作是把问题界说转换为数学模型的历程。

和问题界说相对应,数学模型包罗几个主要组成部门:决议变量、情况变量、目的函数和约束条件。决议变量表现决议者可以控制的因素,即可控输入,是需要通过模型求解来确定的模型中的未知变量。情况变量表现决议者不行控的外界因素,即非可控输入,需要在收集数据阶段确定其详细数值,并在模型中以常量表现。

目的函数是指形貌问题目的的数学方程,而约束条件则是指形貌问题中制约和限制因素的数学表达式(等式或不等式)。(这个主要是计划的一种界说) 数学建模是一项富有缔造性的事情。对任何问题,“没有唯一正确的模型”。

数学模型是对现实问题的一种抽象形貌,一定会忽略一些因素。而这些被忽略的看似无关或不重要的因素,可能会引起重大的变化,例如人们熟知的“蝴蝶效应”。著名的统计学家乔治·博克斯曾说过:“All models are wrong.Some are useful.”(所有的模型都是错误的,但有一些是有用的。)对同一问题,可以从差别角度对其构建出多个差别的模型。

对于庞大问题的建模,很难一步到位,通常需要接纳一种逐步演化的方式来举行。从简朴的模型开始(忽略一些难以处置惩罚的因素),然后通过逐步添加更多相关因素,让模型演化,使其与实际问题越发靠近。基于模型分析得出的结论或建议的价值,与模型对实际情况的形貌切合水平有很大的关系。

通常,模型越靠近实际,分析得出的效果的价值也越大。除此之外,美国最为权威的数学建模参考书Mathematical Modeling 在前言部门对数学建模也有着一个比力通俗易懂的解释:Mathematical modeling is the link between mathematics and the rest of the world. You ask a question. You think a bit, and then you refine the question, phrasing it in precise mathematical terms. Once the question becomes a mathematics question, you use mathematics to find an answer. Then finally (and this is the part that too many people forget), you have to reverse the process, translating the mathematical solution back into a comprehensible, no-nonsense answer to the original question. Some people are fluent in English, and some people are fluent in calculus. We have plenty of each. We need more people who are fluent in both languages and are willing and able to translate. These are the people who will be influential in solving the problems of the future.翻译的拙作见下:数学建模是数学与世界其他地方(其他领域)之间建设的联系的方法。

您提出一个问题,然后稍作思考,然后细化问题,最后以准确的数学术语表述。一旦问题酿成数学问题,您就要使用数学来找到谜底。最后,最后(这是许多人忘记的部门),您必须逆转这一历程,将数学解转换回对原始问题的可明白的,有意义的谜底。

我们知道,有些人说英语流利,有些人做微积分运算熟练,擅长差别领域的人多种多样。我们需要醒目差别领域的人而且愿意将差别领域举行转化,这些人将对解决未来的问题发生影响。这两本书实际上都清晰地说明晰数学建模的特点,一个从方法上,一个从思想上。

这里我稍微总结一下:从思想上:从思想上来说,数学建模是构建数学与其他学科之间的桥梁。我们所谓的交织学科,很或许率就是以数学、统计学、物理学作为理论基础,盘算机作为盘算或可视化利器,对某些学科举行定量分析。好比现在盛行的生物信息学、整合生命科学、商业分析,或者Computational XX的相关学科,基本上都和数学建模相关。

从技术上:从技术的角度上来说,数学建模从来都不是强迫症的乐园。因为,我们通过上文已经得出,数学模型自己是不完美的,因此我们要容忍一定水平上模型对原型的“失真”。而且由于选择的因素的偏重点差别,很有可能两个团队使用了差别数学领域的方法对问题举行分析并建设模型。

可是,正是这些貌寝而且存在误差的模型,解决了我们生活中许多方方面面的问题。数学模型的建设、求解和应用是人类的理论向着社会应用的一大跃进。

数学建模的主要历程下面主要来谈谈数学建模的主要历程,或者我可以说是数学建模的整个生命周期是怎么样的。这里我同样使用中外两个差别版本的教科书对这个问题的看法,首先第一本是大家到场数学建模竞赛中可能已经使用过的课本:A First Course in Mathematical Modeling,这本课本中泛起的数学建模五步法 ,应该是大家耳熟能详的,这里给大家分享一下:数学建模五步法下面是我老师课本中关于数学建模的一般流程。这个流程与数学建模五步法相比,越发贴近实际项目中的流程,这里我使用AxGlyph绘制下改流程图:基于模型解决问题的一般流程这个流程图即是基于模型解决问题的一般流程,数学建模五步法与其相比越发精简,更适合在数学建模竞赛中应用,而该流程在实际生活中更具指导意义。

另有一种是我们数学建模竞赛中经常走的写作套路,这里也和大家分享一下:摘要1.问题重述(配景先容、文献综述、问题重述等)2.问题分析(主要对问题举行一定的分析,可以做一个分析流图)3.问题假设(其实也就是对问题的界限举行划定,我们需要让问题更详细一些)4.符号说明(对于文章中主要泛起的符号举行一定的解释,利便评委老师明白)5.模型建设与求解(这一步最为焦点,即数学建模和模型的求解部门)6.敏捷度分析(即分析模型的输出,对参数或情况变化的敏感水平的分析)7.模型的推广及优缺点(主要对模型的进一步研究分析和优缺点解释)参考文献附录我们可以对基于模型解决问题的一般流程中的步骤举行一定的分析:首先是界说问题和收集数据环节。我认为这是上述流程中最为难题也最容易让人感应很虚无缥缈的一个部门。

首先,由于我们每小我私家说话的方式和对问题的明白水平差别,可能同一件事务,从差别的人口中或者行为中或者情感中体现出来是不太一样的。其实有一个游戏就是使用了这种特点,这种游戏叫做心有灵犀游戏 ,意思就是说,一小我私家看到一个词汇,通过饰演这个词汇,让另外一小我私家明白而且将这个词说出来。

一般而言,不经由一定水平的训练,是很难让两者协调地举行这个游戏的。或者我们换一个明白,更简朴地说,我们知道存在失真这个名词,我们差别的人对一个事务的明白,都市存在差别水平的失真,然后再通过语言或者其他行为通报处于会形成二次失真。

下面我引用一段话 :如果卖力解决问题的人和卖力提出问题的人对问题的明白差别,其效果可想而知。从“错误”的问题出发,很难过出“正确”的谜底。有时候,我们对于一个要解决的问题,可能并没有真正明白问题的本质,可能问题自己并不是一个问题,或者这个问题在许多年之前被人已经发现了,这样的情况在科研界是很容易泛起的。

好比之前吵得沸沸扬扬的关于一种新的特征值解法 ,陶哲轩在这一块也犯了这样的错误。对于我们普通人来说,更可能如此,一些问题只是拍脑壳想出来的,并没有深思熟虑。许多人曾经指出:“能够准确地提出问题,就相当于这个问题已经解决了一半。”因此,界说问题是解决问题的首要环节。

问题的界说主要有两个部门,划分是确定目的和划定界限。我们的目的应该是可以量化而且可以实现的,目的可能有一个目的,可能有多个目的,也可能是一个目的下有许多子目的。

其次,我们需要划定界限,因为一个问题受到的影响因素有许多,我们需要做出取舍,找出主要矛盾,舍弃次要矛盾。这对于我们来说,实际上都是很是容易让我们头大的事情。但幸运的是,对于宽大技术事情者或数学建模竞赛喜好者来说,上述问题基本上都是现成的,都是由相关机构或者相关人员经由深思熟虑后思量的问题,我们只需要好好思考模型,去解决问题就好了。收集数据,我认为是另外一个老浩劫的问题。

许多人到场过科研项目或者数学建模竞赛的人都知道,有时候,即是是一个很是简朴的问题,或者是一个很是成熟的问题,没有数据,什么都是白费,巧妇难为无米之炊。因此,我们需要开动头脑,发挥自己和互助同伴的优势,争取扩大自己的数据使用权和数据获取渠道能力。同时,收集数据对界说问题也很重要 :在界说问题的同时,还需要收集相应的数据。收集数据可以验证对问题的界说是否合理。

我们可以通过问题的指导下去收集可能可以解决问题所需要的数据,同时我们也可以凭据数据收集的水平,反过来看是否需要修改问题的影响因素或界限条件。数据的收集通常是一个很繁琐的事情,我们往往希望乞求于有专业的组织或者小我私家可以给我们分享数据。某些数据我们可以凭据网上现存的,如国家统计局的数据,而更多时候,我们只能通过自己收集,需要通过大量的调研、收集和整理。现在许多大企业越来越注重数据的收集、清洗、存储,在未来大数据时代中,数据驱动和“以数据为王”会成为许多企业坚定生长的目的。

有时候因为数据收集上存在一定的差距,因此在许多和建模相关的竞赛中都给与数据,这样可以尽最大可能保证角逐更多地是在比力模型的优劣。因为有时候,收集到一份很是有意义而且是独家的数据,哪怕使用最简朴的图表分析和形貌性统计,也能做出较为有意义的解释。现在在数学建模竞赛中,全国大学生数学建模竞赛和全国研究生数学建模竞赛是两个相对数据上保证公正的角逐,建议大家多多到场。好了以上是关于界说问题和收集数据环节的解读,下面我们可以聊聊其他环节。

下面的两个环节可以放在一起来说,即数学建模和模型求解。在数学建模竞赛中,这个对应的环节是模型建设与求解,也是最为焦点的步骤。同时,这应该是我们宽大看这个问题的人,最为体贴的问题,即我应该如何建模,而且模型应该如何举行求解。

在前面我们已经说过 :数学模型是使用系统化的符号和数学表达式对间题的一种抽象形貌。数学建模可看作是把问题界说转换为数学模型的历程。大家可以回到文章中的最前面去阅读关于数学建模的全部叙述,这里就不再重复,总而言之,这可能是对于许多本科学生甚至高中学生来说,可能第一次接触数学建模,会以为这是一个“肮脏”的事情。因为种种的假设以及原理不清楚、不显着,导致不以为这是一个完美的、普世的。

尤其是刚刚学完高中物理或者数学的同学,会以为一切都是完美的、准确的。可能认为解题仅仅是高考那样,写出详细解答历程,得出谜底即可。但事实上,我们阅读许多数模相关的论文,其中到处充满了妥协,特定的、理想化的、某一类的、近似的等不完美的词汇泛起在模型的建设历程中,对于低年级的学生来说,需要适应这种历程的转变。

我们只能尽自己最大的努力,让模型可以越发靠近实际,让模型的价值体现出来。下面谈谈模型的求解部门。对于模型的求解这一部门,我同样引用了一段话 :数学模型中通常包罗一些未知变量,如决议变量,需要通过模型求解来获得其(最优)取值。模型求解就是为了找出一组满足所有约束条件,同时使得目的函数值为最优的决议变量取值。

一般而言,模型的求解主要有以下两种形式 :1.确定可行解的规模,在该规模中通过某种方法寻找最优解。2.找到一个可行解,通过某种方法逐步对其举行优化,直到无法优化为止。

从上述的两种求解计谋中,我们可以感受到盘算的事情量庞大。因此,我们是很难使用草稿纸去举行盘算出一个效果。

这种使用盘算机举行盘算的方式,在大学以前,大家很少有时机去实验。因此一般而言,有一个稍微痛苦的适应历程。在盘算模型的工具的选择上,从是否要编程的角度来说,可以分为按钮式操作和编程式操作(现在许多软件同时支持这两种操作,我只思量大家越发习惯倾向的使用方式)。

从是否商业化的角度可以分为商业软件和开源软件,在下面我们可以简朴举几个例子:1.MATLAB(编程操作+商业软件)2.Python(编程操作+开源软件)3.R(编程操作+开源软件)4.SPSS(按钮操作+商业软件)5.SAS(编程操作+商业软件)6.Julia(编程操作+开源软件)7.STATA(按钮操作+商业软件)8.Eviews(按钮操作+商业软件)9.Origin(按钮操作+商业软件)10.Wolfram(编程操作+商业软件)11.Excel(按钮操作+商业软件)实际上另有很是多的工具这里无法一一枚举。大家可以凭据自己的实际需要举行学习,可能是因为自己在学校选修了某一门语言,或者因为某个项目的契机恰好快速学习了某种语言,总之自己喜欢哪个,想上手哪个就用哪个。到了后期,因为自己的专业需求或者因为该领域的老师建议,再做出越发详细的选择。从上面的先容可以看出,许多软件的主要还是通过按钮操作,因此对于我们宽大文科、经管类学生来说,实验使用数学模型去解决一些问题的门槛,也没有那么高。

对于理工科学生来说,学习一些语言的同时,实际上已经顺手掌握了一门可以用来求解模型的语言。对于求解的效果,我们可以使用差别的形式举行表达,可以使用干巴巴的数据、可以使用一系列的表格、也可以使用差别的图表举行可视化表现。在今天大数据时代,数据可视化越来重要。

由于海量的数据对于决议者来说很容易摸不清头脑。这时候有一张较为清晰的图表,对于决议者来说,越发容易明白当前的效果并做出合理的判断。对于市面上存在的林林总总的使用教程,虽然有些书写的不错,可是并不是最好的。

最好的教程永远都是help文件或者技术文档。好比MATLAB的help文件险些先容了所有你可能用到的功效,而且给予了代码示例 ,从下图我们可以看出,资助文档很是全,基本上过一遍自己需要相识的内容,就可以上手开始了:MATLAB资助文档菜单好比我想学习多元线性回合并且想绘制回归曲线出来,我们查阅了MATLAB的资助文档,获得下面的这种求解措施 :load carsmallYear = categorical(Model_Year);tbl = table(MPG,Weight,Year);mdl = fitlm(tbl,'MPG ~ Year + Weight^2');plot(mdl)MATLAB绘制出来的曲线我们可以通过这种措施,一点点地去相识一个语言。

其他的语言也是类似,好比你想使用Python下的可视化包Matplotlib 或者Seaborn ,你也可以去相关的官网去相识如何使用。这可能比你买书后,再去一页页翻书,效率要高得多。

华体会官网

R语言也是举行类似操作。用一句话总结,想学什么包,就去什么包的官网或者开源组织上去围观学习一圈,这样应该是学习使用这种包的一种比力有效率的方法。对于文科学生来说,在做一些简朴的统计模型或者计量模型的时候,可能会犹豫到底是使用SPSS/SAS/STATA/Eviews中的哪一种好,究竟由于大要都是按钮式或者编程不是那么庞大,因此主要还是应用应该更有针对性,人大经济论坛上有一篇分析以上四种工具的比力文 ,我以为还不错。

另有我们应该稍微注意下商业软件的版权问题,我在这里还是不建议大家使用盗版软件。许多开源软件如Python和R现在已经是很是强有力的模型求解武器。对于在校学生来说,MATLAB在许多学校也有开放正版软件的使用许可,对于到场全国大学生数学建模竞赛的同学,也有申请免费使用的许可。

大家可以凭据自己学校的特色和倾向性对工具举行选择。以上稍微先容了一下如何快速上手相关工具的履历分享,可能有点和这个问题的主题并不完全相关,可是我以为作为许多同学的疑惑,在这里很有须要说清楚。

最后关于大学生数学建模竞赛,我适当增补一些对于刚刚开始实验这项角逐的选手的做题的措施,我将其称之为黑箱理论。因为对于大学生来说,短期内彻底明确一个比力热门的模型是很难题的,尤其是这道题目并不是我们专业相关的。

我有一个比力生动的例子:你需要学会使用锤子,可是你暂时还不需要学会造锤子!关于一些较为基础的模型,大家可以去我的朋侪的CSDN下的博客 上举行学习。关于数学建模竞赛相关的问题,大家可以关注我的回覆荟萃 ,希望这个回覆可以资助到大家。其实挺希望未来的学习门槛可以继续降低,最好可以游戏化,好比Python学习上就有类似的事情。关于模型解决问题这一流程中最关键的问题叙述完毕!下面我们来谈一谈优化后分析(敏捷度分析)这一步。

这一步说老实话,许多人都搞不清楚,也对这个问题避而不谈,在数学建模竞赛中,大家在这个环节上一般草草了事或者套一套模板,或者直接避而不谈。这里我稍微谈一谈吧。

一般而言,我们所求解的效果是一个很是理想化的效果,即是建设在一个合理的假设后的模型,而且其情况变量是准确的或较优的。在优化后分析这一步,我们假设模型是合理的,而重点分析情况变量的取值,和在情况变量下取值的变更举行讨论和分析。

关于情况变量的叙述见下 :情况变量是我们对未来情况状态的一种预计,因而不行制止地会存在一定的误差。同时,在方案实际执行历程中,情况变量的取值还可能会发生差别水平的变化。而情况变量取值的变化,可能会导致模型的最优解和目的函数的最优值发生变化。

如果依据当前模型的最优解做出决议,就存在一定水平风险。为了缓解或是制止情况变化可能造成的风险,在提出决议建议前还需要举行优化后分析。以上是情况变量的解释,以及情况变量对模型的影响。下面是一个对优化后分析的一种界说 :优化后分析也被称为敏感性分析,即分析模型最优解和最优值对某一个或多个情况变量发生变化的敏感水平,是一种评估候选方案风险的不确定性分析方法。

敏感性分析有两种常见的方法:一是分析在最优解(即最优方案保持稳定)的情况下,各个情况变量允许变更的规模,称为可变规模;二是使情况变量在特定规模内(通常是在当前预计值的周围)变更,视察相应的模型输出变化的情况。一般而言,在数学建模竞赛中,大家在做敏感性分析时,倾向使用图表来形貌一个模型输出情况。这样的原因主要有以下几点:第一,大家一般在做敏感性分析时,到了角逐的末尾阶段,可能大家多几多少感应时间上不够用。

一般决议做敏感性分析的队伍,基本上都是要决议打击国家一等奖的队伍,更多的队伍选择放弃这个部门,直接对文章举行收尾事情。所以,对很是有限的条件举行“调参”,在这个基础上,把一系列的输出用图像的形式举行表现,这样不仅节约时间,而且由于图像直观易懂,评委可以马上清楚模型在情况的影响下会如何泛起变化。

对于情况的可变规模,也有一定的讲求 :由于实际情况固有不确定性,导致决议不行制止地会存在一定水平的风险,敏感性分析有助于降低这种风险。一般而言,情况变量可变规模越大,则实际超出该规模的可能性就越小,对应的风险也就越小。反之,可变规模越小,则实际超出该规模的可能性就越大,对应的风险也就越大。

对于模型的解而言,可能最优解经由敏感性分析后发现其情况变量的可变水平较小,因此虽然效果较好,可是十分受到情况的制约,存在较大的风险。而一些输出可能效果不如最优解,但其情况适应能力较好,对于差别的决议者会有差别的选择。

因此虽然说在数学建模竞赛中,我们为了赶时间可以不举行这个分析,可是在日常生活中,做相关分析时,可不能忘记了,其存在的风险可能会真正影响到我们的生活。我们熟悉的投资组合模型就是使用了这一思想。下面我们来谈一谈模型磨练。

模型的磨练相当于是一项工程的验收阶段,由于我们的模型是对现实世界的一种抽象表现,一种高度归纳综合,其合理性是由我们对模型的相关假设是否正确、是否反映现实所确定。由于我们知道,所有的模型都不是完美的,都存在一定的“失真”,因此在模型使用之前,我们需要通过一些手段,对模型举行磨练,来确保我们的模型可以真正地应用到现实问题上去。下面是模型磨练的界说 :把模型求解和分析获得的效果与所研究的实际问题举行对比分析,以磨练模型的合理性,称为模型磨练。

如果磨练发现模型效果与实际不符,则应该修正假设或是更换其他方法重新构建模型。通常一个模型需要经由多次重复修改,才气获得令人满足的效果。

以上是模型磨练的界说,在数学建模竞赛或者许多模型类角逐的流程中,这一步往往很少单独拿出来作为一个流程举行分析。而是模型的建设与求解中,间接地举行模型的磨练了。

好比我们会将一些历史上的数据代入模型来磨练模型的准确性,或者凭据生活知识来判断模型的盘算合理不合理。对于实在是没有数据的情况下,我们可以做仿真,生成大量的数据,来通过这些数据对模型举行验证分析。

在做出模型磨练时,我们一般默认我们的模型是好用的,效果是准确的,然后我们通过差别的案例,差别的输入来验证这个模型是否正确。通常我们对于模型的磨练的常用方法有以下三种 :1.第三方测试,这一点通常是数学建模竞赛或相关赛事没有措施做到的模型磨练的方法,因为我们在角逐完了之后,才有所谓的第三方评委帮我们举行阅卷。

我们在举行模型验证时,最好找一个从来都没有到场过模型构建的人,以他自己的视角重新磨练问题的界说和模型的构建是否合理,或者从差别的角度,再构建一个或多个新模型,并将其效果与原模型举行对比。模型越多,泛起同样错误的概率越小。

从以上文字我们可以看出一件很是有意思的事实,由于对于我们每小我私家来说,数学建模竞赛是无法做到第三方测试的,可是对于组委会来说,则是一个没有标的,即无监视的大型第三方测试。意思就是说,差别的参赛作品互为第三方测试,最终组委会在所有的模型中选择两个最好的模型授予“高教社杯”和“MATLAB创新奖。

”2.回溯磨练,使用历史数据重现已往来磨练所构建的模型在历史情况中的应用效果。虽然模型的应用场景是未来,可是未来没有来临,我们无法举行对比分析。但在许多的应用中,已经积累了大量的历史数据,可以用来模型的磨练。

虽然已往纷歧定代表未来,可是如果模型在已经知道明确效果的已往都无法给出一个令人满足的效果,就很难说服决议者相信这个模型能够在一切都还未知的未来,会给我们带来预期的使用效果。在数学建模竞赛中,回溯磨练是一个我们较为常用的磨练方法,我们通常可以带入一些已经有的数据对模型举行磨练。好比2017年的数学建模国赛A题,第一问和第二三问就是一个内容,两个偏向的历程。对于绝大多数数据驱动类的问题,都可以接纳回溯磨练对模型举行验证。

华体会

3.盘算机仿真,如果我们没有足够的历史数据用来举行回溯磨练,可以实验使用盘算机来对模型的运行情况举行模拟仿真,生成大量的测试数据,并使用这些数据对模型举行验证分析。如我们较为熟悉的蒙特卡洛模拟就是一个常用的仿真方法。

一般而言,仿真常泛起在数据量不足或不给数据的角逐,如美国大学生数学/交织学科建模竞赛,通常就要通过对模型举行仿真来验证模型的合理性,如2019年D题有关卢浮宫逃生门路设计,就需要使用这种方法来对模型举行验证。以上是关于模型磨练的先容,下面是有关提出建议、做出决议和方案实施与视察的先容。提出建议、做出决议和方案实施是一次基于模型解决问题的最后一步。

提出建议主要是凭据优化后分析和模型磨练后的理想模型和备选模型给出建议,以及这些模型背后的某种决议方案举行建议。之后则需要解决问题的人对这些模型举行选择,即“选择应该使用哪一把螺丝刀举行事情,”,对于差别性格的决议者,可能会对某些模型、对某些效果存在一定的偏好,我们应该对这种非理性的因素给予尊重,决议分为单目的决议和多目的决议。最后则是方案的实施和视察,这一步则是把我们的建设的模型和凭据模型做出的效果应用到现实生活中去,如果一切正常,而且在未来我们所履历的事情恰好就是我们模型所预见的那样,那么这个模型可以继续使用。如果存在较大的偏差,则需要去发现是那里泛起了问题,一般主要的问题来自于问题的界说、问题的假设、数据的收集、情况变量的预计、以及最重要的模型的建设,我们需要逐一排查,发现问题后,需要重新再来一遍这样的流程。

幸运的是,大多数的数学建模事情是到不了这一步的,我们不需要担忧我们的事情前功尽弃。一般在做完敏感性分析之后,便永远地躺在论文里。

只有少少数优秀的、而且实用的模型,才有时机放在决议者的桌上,供决议者选择而且应用。这里需要注意的是,现在可能应用在实际生活中的模型,可能并不是这个世界上最先进、最好用的模型,但一定是经由了时间的洗礼,默默无闻地资助了成千上万的人。以上,即是对数学建模的历程(生命周期)举行了一个较为完整清晰的叙述,下面我们来谈一谈第二个议题,即它可以解决哪些问题。2. 数学建模可以解决哪些问题?实际上我以为这个问题太大了,我没有资格往返答这个问题,因为说句实话,随着数学、统计学和盘算机科学的蓬勃生长,基本上每一门学科都开始或者实验开始使用数学建模的方法研究本学科。

在宏观的学科上,好比自然科学(数学、物理学、化学、生命科学、盘算机科学、情况科学、地球科学、心理与认知科学等)、工程学(电子工程、电气工程、机械工程、土木匠程、软件工程、汽车工程、人工智能、质料科学与工程等)、社会科学(政治学、经济学、治理学、教育学、社会学等)其中都有数学建模的影子,好比某门学科前面带上盘算、计量、信息、分析、优化、运筹、统计这样词汇的学科或科目,一般都涉及了数学建模。好比盘算物理、盘算化学、盘算数学、生物信息学、计量经济学、商业分析等。

对于差别专业的同学对于数学建模的明白深度需要差别,我可以做个恰当的比喻。学数学的同学,需要会造锤子,也会使用锤子,而且造锤子的时间可能比使用锤子的时间多许多。宽大理工科专业的同学,需要看过造锤子,可是自己只要会用锤子就行了,而且应该是最会使用锤子的一类人。宽大社会科学专业的同学,只需要使用锤子,而且只是偶然使用锤子就行了。

如果大家想要相识一些数学建模较为简朴的案例,可以买一本书,这本书是姜启源和谢金星老师所写,叫做《数学模型》(第五版) ,这本书也可以基本上认为是全国大学生数学建模竞赛的半官方读物。如果用心阅读此书,而且在到场数学建模竞赛,尤其是全国大学生数学建模竞赛中,这本书一定要备在身上,好比在2017年国赛A题和2019年国赛A题的问题,有一定水平上参考这本书上的模型。好比这本书第六章代数方程与差分方程模型中的CT技术的图像与重建,就是2017年国赛A题的最基础的模型,在这本书的基础之上举行学习和文献查阅,会提高许多效率。另有第五章中的香烟过滤嘴的作用,可以类比2019年高压油管的模型建设。

所以不管是从感兴趣的角度还是从角逐功利的角度,这本书都是值得学习一下的。下面我把这本书的目录给大家搬运一下,到场过数学建模竞赛的同学们,应该会看到许多熟悉的影子:第一章 建设数学模型1.1从现实工具到数学模型1.2数学建模的重要意义1.3建模示例之一包饺子中的数学1.4建模示例之二路障间距的设计1.5建模示例之三椅子能在不平的地面上放稳吗1.6数学建模的基本方法和步骤1.7数学模型的特点和分类1.8怎样学习数学建模——学习课程和到场竞赛第二章 初等模型2.1双层玻璃窗的功效2.2划艇角逐的结果2.3实物交流2.4汽车刹车距离与门路通行能力2.5预计出租车的总数2.6评选举重总冠军2.7解读CPI2.8核军备竞赛2.9扬帆远航2.10节水洗衣机第三章 简朴优化模型3.1存贮模型3.2森林救火3.3倾倒的啤羽觞3.4铅球掷远3.5不买贵的只买对的3.6血管分支3.7冰山运输3.8影院里的视角和仰角3.9易拉罐形状和尺寸的最优设让第四章 数学计划模型4.1奶制品的生产与销售4.2自来水输送与货机装运4.3汽车生产与原油采购4.4接力队选拔和选课计谋4.5饮料厂的生产与检验4.6钢管和易拉罐下料4.7广告投入与升级调薪4.8投资的风险与收益第五章 微分方程模型5.1人口增长5.2药物中毒抢救5.3打鱼业的连续收获5.4资金、劳动力与经济增长5.5香烟过滤嘴的作用5.6火箭发射升空5.7食饵与捕食者模型5.8赛跑的速度5.9万有引力定律的发现5.10感染病模型和SARS的流传第六章 代数方程与差分方程模型6.1投入产出模型6.2CT技术的图像重建6.3原子弹爆炸的能量预计与量纲分析6.4市场经济中的蛛网模型6.5减肥计划——节食与运动6.6按年事分组的人口模型第七章 离散模型7.1汽车选购7.2职员提升7.3厂房新建还是改建7.4循环角逐的名次7.5公正的席位分配7.6存在公正的选举吗7.7价钱指数7.8钢管的订购和运输第八章 概率模型8.1传送系统的效率8.2报童的诀窍8.3航空公司的超额售票计谋8.4作弊行为的观察与预计8.5轧钢中的浪费8.6博彩中的数学8.7钢琴销售的存贮计谋8.8基因遗传8.9自动化车床治理第九章 统计模型9.1孕妇吸烟与胎儿康健9.2软件开发人员的薪金9.3酶促反映9.4投资额与生产总值和物价指数9.5冠心病与年事9.6鲸虫分类判别9.7学生考试结果综合评价9.8艾滋病疗法的评价及疗效的预测第十章 博弈模型10.1点球大战10.2拥堵的早岑岭10.3“一口价”的战略10.4不患寡而患不均10.5效益的合理分配10.6加权投票中权力的怀抱通过这本书我们可以看到数学建模在各个领域的简朴应用,至于更深条理的应用,我以为各行业的从业者,都可以单独开一个新的问题举行讨论了。在教学的环节中,能明白到上述条理一般上是够用了。

下面回覆最后一个,也是最为使用的问题:现在有哪些和数学建模相关的竞赛?3. 现在有哪些和「数学建模」相关的竞赛?这是一个很是好的问题,也应该是这篇回覆最为实用的问题,作为一名学科竞赛指导老师,在这个领域有自己的心得体会。现在由于人工智能和数学建模是强相关,本质上人工智能的分支是许多统计模型的合集。

因此这一两年数学建模类的竞赛越来越火热。我把数学建模竞赛主要分为三类:直接冠以「数学建模」在竞赛名字上的角逐,也就是狭义数学建模竞赛。与数学建模间接相关的角逐,如人工智能、数据分析等竞赛平行竞赛,以及将数学建模使用到自己各个专业中的角逐,如iGEM,以及种种创新创业类、学术作品角逐中间接用到数学建模方法的,如挑战杯、互联网+、节能减排等,这我将其称为广义数学建模竞赛。

一般我们大多数学生到场的数学建模竞赛为狭义数学建模竞赛,我一篇文章数学建模竞赛的一些心得体会(关于每年的角逐) 中有对一年所有狭义的数学建模竞赛举行梳理和难度分析。这里我仅枚举我国官方组织举行的数学建模竞赛 :1.全国大学生数学建模竞赛(简称国赛)2.“深圳杯”数学建模挑战赛(简称深圳杯)3.中国研究生数学建模竞赛(简称研赛)以上是我们我们国家官方组织举行的角逐,特别注意的是国赛和研赛在上海市落户加分中是被认可的。国赛是现在生长最完善、影响力最大、到场人数最广、而且规则最为严格的角逐。

深圳杯是一个竞争最为猛烈,参赛周期最长,含金量最高,而且在一定水平上解决实际问题的角逐。想要学习数学建模或者查阅数学建模优秀论文,可以去中国大学生在线-数学建模板 块举行学习。研赛也是是现在研究生到场人数最多的角逐之一。

除了大学生和研究生的数学建模竞赛,高中生的数学建模竞赛也有一定水平的生长,划分是丘成桐科学奖和美国高中生数学建模竞赛,由于到场人数较少,而且高中生的知识储蓄大多不足,而且大多精神有限,这里不展开先容。关于广义数学建模竞赛,真的是无穷无尽的。

我以为现在通常挂上人工智能、数据分析、数据挖掘等名头的都可以算作这一类角逐,由于角逐许多,我在知乎上找了一个不错的问题:海内外有哪些数据分析相关的竞赛角逐网站? ,大家可以举行参考。关于自己各个学科、各个领域的学习(竞赛)中,大家在到场的时候,不妨思考下,到底能不能用到数学建模的相关知识,是一定要用?还是用了之后会锦上添花?这个问题,我想在本回覆的最后,留给各大读者朋侪们!大家可以在评论区举行留言,一起讨论。如果喜欢,接待点赞+收藏哦~。


本文关键词:你想,相识,什么,是,数学建模,么,看,这篇,文章,华体会官网

本文来源:华体会-www.xinyihuizhan.com

电话
036-440296298